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“Data movement, rather than computational processing, will be the 
constrained resource at exascale.” – Dongarra et al. 2011.	




Examples	
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Computational geometry in 
molecular dynamics 

Ridge detection in 
meteorology 

Density estimation	

in cosmology 



Common Data Movement Layer	
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DIY is a programming model and runtime for HPC block-parallel data analytics.	

•  Block parallelism	

•  Flexible domain decomposition and assignment to resources	


•  Efficient reusable communication patterns	


•  Automatic dual in- and out-of-core execution	


•  Automatic block threading	




Basic Concepts	


4	




Partition Data Into 
Blocks	
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The block is the basic 
unit of data 
decomposition. Original 
dataset is decomposed 
into generic subsets 
called blocks, and 
associated analysis items 
live in the same blocks. 
Blocks don’t have to be 
“blocky.”  Any 
subdivision of data (eg., a 
set of graph nodes, a 
group of particles, etc.) is 
a block.	


Structured Grid

AMR Grid

Unstructured Mesh

Graph



Multiple Regular Decompositions	
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1.  Decomposition 

can be a regular 
grid of blocks or a 
k-d tree.	


2.  For a regular grid, 
constraints on 
numbers of 
blocks can be 
imposed to get 
pencil or slab 
shapes.	


3.  Multiple 
decompositions 
can co-exist.	




Neighborhood Links	
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- Limited-range communication	

- Allow arbitrary groupings	


- Distributed, local data structure and 
knowledge of other blocks (not 
master-slave global knowledge)	


Two examples of 3 out of a total of 25 neighborhoodsExamples of 3 neighborhoods in a regular grid, unstructured mesh, and graph.	




Communicate over the Link	
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DIY provides point to point and different varieties of collectives within a 
neighborhood via its enqueue/exchange/dequeue mechanism. 	


�����������	�
�������������
�
���������������
���	


�������������������


�������������������
�����
�����������������������

������������������������������
�
���������������	��������
�

How to enqueue items 
for neighbor exchange	


•  DIY offers several 
options	


•  Send to a particular 
neighbor or neighbors, 
send to all nearby 
neighbors, send to all 
neighbors	


•  Support for periodic 
boundary conditions	




Global 
Communication 

Patterns	
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Swap-reduce	


Merge-reduce	




// initialization	

Master                          master(world, num_threads, mem_blocks, ...); 	

ContiguousAssigner       assigner(world.size(), tot_blocks); 	

decompose(dim, world.rank(), domain, assigner, master);	

	

// compute, neighbor exchange	

master.foreach(&foo);	

master.exchange();	

	

// reduction	

RegularSwapPartners(dim, tot_blocks, k); 	

reduce(master, assigner, partners, &foo);	

	

// callback function for each block	

void foo(void* b, const Proxy& cp, void* aux) 	

{	

    for (size_t i = 0; i < in.size(); i++) 	

        cp.dequeue(cp.link()->target(i), incoming_data); 	

    // do work on incoming data	

    for (size_t i = 0; i < out.size(); i++) 	

        cp.enqueue(cp.link()->target(i), outgoing_data[i]);	

}	


Example Usage	
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One Example in Detail	
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Self-Adaptive Density Estimation���
���

Sampling a regular density field from a distribution of particle positions 
using a Voronoi tessellation as an intermediate data model.	
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Key Ideas 	


• Convert discrete particle data into continuous function that can be 
interpolated, differentiated, interpolated, represented as a regular grid (field)	


• Automatically adaptive window size and shape	


• Comparison with CIC using synthetic and actual data	


• Voronoi tessellation and density estimation computed in parallel on 
distributed-memory HPC machines	


	




Estimation Kernels	
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CIC	

Fixed  size and shape	


TESS	

Variable size and shape	


In cloud-in-cell (CIC) methods, 
particles are distributed to a 
fixed number of grid points.	


In tessellation (TESS) methods, particles are 
distributed to a variable number of grid points 

according to the Voronoi or Delaunay 
tessellation that has variable size and shape cells.	




Overall Algorithm	
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for (all Voronoi cells) {	

	

  compute grid points in Voronoi cell interior	

  	

  for (all interior grid points) {	

	

    if (grid point is inside local block)	

      add mass contribution to grid point	

    	

    else	

      send mass contribution to neighbor block 	

         containing grid point and add it there	

	

    if (2D projection) {	

      accumulate mass at 2D pixel	

      divide by pixel area for 2D density	

    } 	

	

    else	

        divide by voxel volume for 3D density	

	

  } // interior grid points	

	

} // Voronoi cells	
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Accuracy	
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Navarro-Frenk-White (NFW)	
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k is a constant, 1 for us	

	

ρ(r) is Monte Carlo sampled 
to get test set of particles	

	

Ground truth is 2D plot of 	

ρ(r)	

	

We limit r to [-1.5, 1.5] and 
NFW(r) to 106	

	

	


Synthetic dataset derived from an analytical density function commonly used in 
cosmology.	




NFW 2D Density Fields	
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Analytical	
 TESS	
 CIC	


Top row:	

10243 3D density projected 
to 10242 2D density field 
and rendered in ParaView	


Bottom row:	

Ratio of analytical divided 

by estimated density	




TESS	
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Comparison between analytical 2D 
density and estimated density at	

 y = 0 cross section	


Ratio between analytical 2D density 
divided by estimated density at	

 y = 0 cross section	
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CIC	


Comparison between analytical 2D 
density and estimated density at	

 y = 0 cross section	


Ratio between analytical 2D density 
divided by estimated density at	

 y = 0 cross section	




Complex NFW (CNFW)	
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Our second synthetic dataset is a combination of several NFWs of varying cutoff 
densities and asymmetric scaling factors.	


Analytical cutoff density 
contours	


2e5 sampled particles	
 Voronoi tessellation	




CNFW 2D 
Density Fields	
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Top row:	

10243 3D density projected 
to 10242 2D density field 
and rendered in ParaView	


Bottom row:	

Ratio of analytical divided 

by estimated density	


Analytical	
 TESS	
 CIC	




Peterka et al., High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation. SC14. 

Performance of Voronoi Tessellation	
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Strong and weak scaling for up 
to 20483 synthetic particles and 
up to 128K processes 
(excluding I/O) shows up to 
90% strong scaling and up to 
98% weak scaling.	


With Dmitriy Morozov and Carolyn Phillips  [github.com/diatomic/tess2]	




Left: Strong scaling of 
estimating the density of 5123 
synthetic particles onto grids 
of various sizes.	
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Performance of Density Estimation	

With Hadrien Croubois, Nan Li, Steve Rangel, and Franck Cappello 

Peterka et al., Self-Adaptive Density Estimation, SIAM SISC 2016. 

 [github.com/diatomic/tess2]	


Below: Density estimation 
of one halo of dark matter 
particles in a cosmology 
simulation	




Recap���
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How to DIY Data Analysis	


DIY data movement library for parallelizing data analysis	

• Decompose data into blocks	


• Assign blocks to processing elements	


• Have several decompositions at once	

• Overload blocks, migrate blocks between processing elements	


• Communicate between blocks	


• Migrate blocks in and out of core	


• Thread blocks with finer-grained processing elements	


Tessellation-based density estimation example	


•  Parameter-free	


•  Shape-free	


• Automatically adaptive	

• Higher quality estimation in high-contrast data	


•  Scalable parallel performance	
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